ملخص
Let P be a set of n points in general position in the plane. Let R be a set of n points disjoint from P such that for every x, y∈ P the line through x and y contains a point in R outside of the segment delimited by x and y. We show that P∪ R must be contained in cubic curve. This resolves a special case of a conjecture of Milićević. We use the same approach to solve a special case of a problem of Karasev related to a bipartite version of the above problem.
اللغة الأصلية | الإنجليزيّة |
---|---|
الصفحات (من إلى) | 905-915 |
عدد الصفحات | 11 |
دورية | Discrete and Computational Geometry |
مستوى الصوت | 64 |
رقم الإصدار | 3 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 1 أكتوبر 2020 |
منشور خارجيًا | نعم |