On max-clique for intersection graphs of sets and the hadwiger-debrunner numbers

Chaya Keller, Shakhar Smorodinsky, Gábor Tardos

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

17 اقتباسات (Scopus)

ملخص

Let HDd(p, q) denote the minimal size of a transversal that can always be guaranteed for a family of compact convex sets in Rd which satisfy the (p, q)-property (p ≥ q ≥ d + 1). In a celebrated proof of the Hadwiger-Debrunner conjecture, Alon and Kleitman proved that HDd(p, q) exists for all p ≥ q ≥ d + 1. Specifically, they prove that HDd(p, d + 1) is O(pd2+d). This paper has two parts. In the first part we present several improved bounds on HDd(p, q). In particular, we obtain the first near tight estimate of HDd(p, q) for an extended range of values of (p, q) since the 1957 Hadwiger-Debrunner theorem. In the second part we prove a (p, 2)-theorem for families in R2 with union complexity below a specific quadratic bound. Based on this, we introduce a polynomial time constant factor approximation algorithm for MAX-CLIQUE of intersection graphs of convex sets satisfying this property. It is not likely that our constant factor approximation can be improved to a PTAS as MAX-CLIQUE for intersection graphs of fat ellipses is known to be APX-HARD and fat ellipses have sub-quadratic union complexity.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيف28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017
المحررونPhilip N. Klein
الصفحات2254-2263
عدد الصفحات10
رقم المعيار الدولي للكتب (الإلكتروني)9781611974782
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2017
منشور خارجيًانعم
الحدث28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017 - Barcelona, أسبانيا
المدة: ١٦ يناير ٢٠١٧١٩ يناير ٢٠١٧

سلسلة المنشورات

الاسمProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
مستوى الصوت0

!!Conference

!!Conference28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017
الدولة/الإقليمأسبانيا
المدينةBarcelona
المدة١٦/٠١/١٧١٩/٠١/١٧

بصمة

أدرس بدقة موضوعات البحث “On max-clique for intersection graphs of sets and the hadwiger-debrunner numbers'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا