No Krasnosel’skiĭ number for general sets

Chaya Keller, Micha A. Perles

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

For a family ℱ of non-empty sets in ℝd, the Krasnosel’skiĭ number of ℱ is the smallest m such that for any S∈ ℱ , if every m or fewer points of S are visible from a common point in S, then any finite subset of S is visible from a single point. More than 35 years ago, Peterson asked whether there exists a Krasnosel’skiĭ number for general sets in ℝd.The best known positive result is Krasnosel’skiĭ number 3 for closed sets in the plane, and the best known negative result is that if a Krasnosel’skiĭ number for general sets in ℝd exists, it cannot be smaller than (d + 1)2. In this paper we answer Peterson’s question in the negative by showing that there is no Krasnosel’skiĭ number for the family of all sets in ℝ2. The proof is non-constructive, and uses transfinite induction and the well-ordering theorem. In addition, we consider Krasnosel’skiĭ numbers with respect to visibility through polygonal paths of length ≤ n, for which an analogue of Krasnosel’skiĭ theorem for compact simply connected sets was proved by Magazanik and Perles. We show, by an explicit construction, that for any n ≥ 2, there is no Krasnosel’skiĭ number for the family of compact sets in ℝ2 with respect to visibility through paths of length ≤ n. (Here the counterexamples are finite unions of line segments.)

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)345-361
عدد الصفحات17
دوريةIsrael Journal of Mathematics
مستوى الصوت256
رقم الإصدار1
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - سبتمبر 2023

بصمة

أدرس بدقة موضوعات البحث “No Krasnosel’skiĭ number for general sets'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا