Nested Barycentric Coordinate System as an Explicit Feature Map

Lee Ad Gottlieb, Eran Kaufman, Aryeh Kontorovich, Gabriel Nivasch, Ofir Pele

نتاج البحث: نشر في مجلةمقالة من مؤنمرمراجعة النظراء

1 اقتباس (Scopus)

ملخص

We introduce a new embedding technique based on a barycentric coordinate system. We show that our embedding can be used to transform the problem of polytope approximation into one of finding a linear classifier in a higher dimensional (but nevertheless quite sparse) representation. In effect, this embedding maps a piecewise linear function into an everywhere-linear function, and allows us to invoke well-known algorithms for the latter problem to solve the former. We demonstrate that our embedding has applications to the problems of approximating separating polytopes - in fact, it can approximate any convex body and unions of convex bodies - as well as to classification by separating polytopes and piecewise linear regression.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)766-774
عدد الصفحات9
دوريةProceedings of Machine Learning Research
مستوى الصوت130
حالة النشرنُشِر - 2021
الحدث24th International Conference on Artificial Intelligence and Statistics, AISTATS 2021 - Virtual, Online, الولايات المتّحدة
المدة: ١٣ أبريل ٢٠٢١١٥ أبريل ٢٠٢١

بصمة

أدرس بدقة موضوعات البحث “Nested Barycentric Coordinate System as an Explicit Feature Map'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا