ملخص
Given a dense subset A of the first n positive integers, we provide a short proof showing that for p = ω(n-2/3), the so-called randomly perturbed set A∩ [n]p a.a.s. has the property that any 2-coloring of it has a monochromatic Schur triple, i.e., a triple of the form (a, b, a + b). This result is optimal since there are dense sets A, for which A ∩ [n]p does not possess this property for p = o(n-2/3).
اللغة الأصلية | الإنجليزيّة |
---|---|
الصفحات (من إلى) | 2175-2180 |
عدد الصفحات | 6 |
دورية | SIAM Journal on Discrete Mathematics |
مستوى الصوت | 33 |
رقم الإصدار | 4 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2019 |