TY - JOUR
T1 - Molecular Insights into the Wettability and Adsorption of Acid Gas-Water Mixture
AU - González-Barramuño, Bastián
AU - Cea-Klapp, Esteban
AU - Polishuk, Ilya
AU - Quinteros-Lama, Héctor
AU - Piñeiro, Manuel M.
AU - Garrido, José Matías
N1 - Publisher Copyright:
© 2024 American Chemical Society.
PY - 2024/4/18
Y1 - 2024/4/18
N2 - Sequestration of acid gas in geological formations is a disposal method with potential economic and environmental benefits. The process is governed by variables such as gas-water interfacial tension, wetting transition, and gas adsorption into water, among other things. However, the influence of the pressure and temperature on these parameters is poorly understood. This study investigates these parameters using coarse-grained molecular dynamics (CG-MD) simulations and density gradient theory (DGT). Simulations were carried out at 313.15 K and a pressure range of 0-15 MPa. A comparison was made against H2S-water systems to clarify the effects of adsorption on interfacial tension due to vapor-liquid-liquid equilibrium. The predicted H2S-water interfacial tension and phase densities by CG-MD and DGT matched the experimental values well. The adsorption can be quantified via the Gibbs Adsorption function Γ12, which correlated well with the three-phase transition. On the one hand, pressure increments below the three-phase transition revealed a significant adsorption of H2S. On the other hand, above the three-phase transition, the Gibbs Adsorption capacity remained constant, which indicated a saturation of H2S at the water surface due to liquid-liquid equilibrium. Finally, H2S behaves markedly differently in wetting transition, rather than the involved for CO2 to different molecular layers beneath the surface of aqueous solutions. In this respect, H2S is represented by a first-order wetting transition while CO2 presents a critical wetting. Finally, it has also been found that the preferential adsorption of H2S over the H2O interface is greater if compared to that of CO2, due to its strong interaction with water. In fact, we have also demonstrated that CO2 under triphasic conditions strongly influences the wetting of the ternary system.
AB - Sequestration of acid gas in geological formations is a disposal method with potential economic and environmental benefits. The process is governed by variables such as gas-water interfacial tension, wetting transition, and gas adsorption into water, among other things. However, the influence of the pressure and temperature on these parameters is poorly understood. This study investigates these parameters using coarse-grained molecular dynamics (CG-MD) simulations and density gradient theory (DGT). Simulations were carried out at 313.15 K and a pressure range of 0-15 MPa. A comparison was made against H2S-water systems to clarify the effects of adsorption on interfacial tension due to vapor-liquid-liquid equilibrium. The predicted H2S-water interfacial tension and phase densities by CG-MD and DGT matched the experimental values well. The adsorption can be quantified via the Gibbs Adsorption function Γ12, which correlated well with the three-phase transition. On the one hand, pressure increments below the three-phase transition revealed a significant adsorption of H2S. On the other hand, above the three-phase transition, the Gibbs Adsorption capacity remained constant, which indicated a saturation of H2S at the water surface due to liquid-liquid equilibrium. Finally, H2S behaves markedly differently in wetting transition, rather than the involved for CO2 to different molecular layers beneath the surface of aqueous solutions. In this respect, H2S is represented by a first-order wetting transition while CO2 presents a critical wetting. Finally, it has also been found that the preferential adsorption of H2S over the H2O interface is greater if compared to that of CO2, due to its strong interaction with water. In fact, we have also demonstrated that CO2 under triphasic conditions strongly influences the wetting of the ternary system.
UR - http://www.scopus.com/inward/record.url?scp=85189829665&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcb.4c00592
DO - 10.1021/acs.jpcb.4c00592
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85189829665
SN - 1520-6106
VL - 128
SP - 3764
EP - 3774
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 15
ER -