Metamodel accuracy assessment in evolutionary optimization

Yoel Tenne, S. W. Armfield

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

8 اقتباسات (Scopus)

ملخص

Evolutionary optimization of expensive functions typically uses a metamodel, i.e. a computationally cheaper but inaccurate approximation of the objective function. The success of the optimization search depends on the accuracy of the metamodel hence an integral part of the metamodelling framework is assessing the metamodel accuracy. In this paper we survey a range of accuracy assessment methods such as methods requiring additional sites, hypothesis testing and minimum lossfunction methods. We describe two numerical experiments: the first benchmarks different accuracy assessment methods from which it follows the most accurate methods are LOOCV and the 0.632 bootstrap estimator followed by the 10-CV and lastly the holdout method. The second experiment studies the effect of two different accuracy assessment methods on the performance of a typical metamodel-assisted EA, from which it follows the accuracy assessment method has significant effect on the obtained optimum and hence should be chosen corresponding to the objective function features and dimension. We also discuss several issues related to the performance of accuracy assessment methods in practice.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيف2008 IEEE Congress on Evolutionary Computation, CEC 2008
الصفحات1505-1512
عدد الصفحات8
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2008
منشور خارجيًانعم
الحدث2008 IEEE Congress on Evolutionary Computation, CEC 2008 - Hong Kong, الصين
المدة: ١ يونيو ٢٠٠٨٦ يونيو ٢٠٠٨

سلسلة المنشورات

الاسم2008 IEEE Congress on Evolutionary Computation, CEC 2008

!!Conference

!!Conference2008 IEEE Congress on Evolutionary Computation, CEC 2008
الدولة/الإقليمالصين
المدينةHong Kong
المدة١/٠٦/٠٨٦/٠٦/٠٨

بصمة

أدرس بدقة موضوعات البحث “Metamodel accuracy assessment in evolutionary optimization'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا