Maximal-margin case-based inference

Martin Anthony, Joel Ratsaby

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

The central problem in case-based reasoning (CBR) is to produce a solution for a new problem instance by using a set of existing problem-solution cases. The basic heuristic guiding CBR is the assumption that similar problems have similar solutions. CBR has been often criticized for lacking a sound theoretical basis, and there has only recently been some attempts at developing a theoretical framework, including recent work by Hullermeier, who made a link between CBR and the probably approximately correct (or PAC) probabilistic model of learning in his 'case-based inference' (CBI) formulation. In this paper we present a new framework of CBI which models it as a multi-category classification problem. We use a recently-developed notion of geometric margin of classification to obtain generalization error bounds.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيف2013 13th UK Workshop on Computational Intelligence, UKCI 2013
الصفحات112-119
عدد الصفحات8
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2013
الحدث2013 13th UK Workshop on Computational Intelligence, UKCI 2013 - Guildford, Surrey, بريطانيا
المدة: ٩ سبتمبر ٢٠١٣١١ سبتمبر ٢٠١٣

سلسلة المنشورات

الاسم2013 13th UK Workshop on Computational Intelligence, UKCI 2013

!!Conference

!!Conference2013 13th UK Workshop on Computational Intelligence, UKCI 2013
الدولة/الإقليمبريطانيا
المدينةGuildford, Surrey
المدة٩/٠٩/١٣١١/٠٩/١٣

بصمة

أدرس بدقة موضوعات البحث “Maximal-margin case-based inference'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا