Lower bounds for the area of black holes in terms of mass, charge, and angular momentum

Sergio Dain, Marcus Khuri, Gilbert Weinstein, Sumio Yamada

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

21 اقتباسات (Scopus)

ملخص

The most general formulation of Penrose's inequality yields a lower bound for Arnowitt-Deser-Misner mass in terms of the area, charge, and angular momentum of black holes. This inequality is in turn equivalent to an upper and lower bound for the area in terms of the remaining quantities. In this paper, we establish the lower bound for a single black hole in the setting of axisymmetric maximal initial data sets for the Einstein-Maxwell equations, when the non-electromagnetic matter fields are not charged and satisfy the dominant energy condition. It is shown that the inequality is saturated if and only if the initial data arise from the extreme Kerr-Newman spacetime. Further refinements are given when either charge or angular momentum vanish. Last, we discuss the validity of the lower bound in the presence of multiple black holes.

اللغة الأصليةالإنجليزيّة
رقم المقال024048
دوريةPhysical Review D - Particles, Fields, Gravitation and Cosmology
مستوى الصوت88
رقم الإصدار2
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 26 يوليو 2013

بصمة

أدرس بدقة موضوعات البحث “Lower bounds for the area of black holes in terms of mass, charge, and angular momentum'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا