ملخص
For a general infinite distance space X, with no assumptions about the distance function, which need not satisfy the metric axioms, it is not clear what the VC-dimension of the class H of half-spaces in X may be and if there are generalization error bounds for learning H. We define a combinatorial dimension of X to be the independence number of the class of balls in X. We compute it for Euclidean space and for several non-metric distance spaces. Using this dimension, we are able to provide a generalization error bound for learning H over any infinite distance space X.
اللغة الأصلية | الإنجليزيّة |
---|---|
رقم المقال | 105008 |
دورية | Information and Computation |
مستوى الصوت | 291 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - مارس 2023 |