Large width nearest prototype classification on general distance spaces

Martin Anthony, Joel Ratsaby

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

4 اقتباسات (Scopus)

ملخص

In this paper we consider the problem of learning nearest-prototype classifiers in any finite distance space; that is, in any finite set equipped with a distance function. An important advantage of a distance space over a metric space is that the triangle inequality need not be satisfied, which makes our results potentially very useful in practice. We consider a family of binary classifiers for learning nearest-prototype classification on distance spaces, building on the concept of large-width learning which we introduced and studied in earlier works. Nearest-prototype is a more general version of the ubiquitous nearest-neighbor classifier: a prototype may or may not be a sample point. One advantage in the approach taken in this paper is that the error bounds depend on a ‘width’ parameter, which can be sample-dependent and thereby yield a tighter bound.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)65-79
عدد الصفحات15
دوريةTheoretical Computer Science
مستوى الصوت738
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 22 أغسطس 2018

بصمة

أدرس بدقة موضوعات البحث “Large width nearest prototype classification on general distance spaces'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا