Joly-Mercier boundary condition for the finite element solution of 3D Maxwell equations

Franck Assous, Eric Sonnendrücker

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

5 اقتباسات (Scopus)

ملخص

Solving the time-dependent Maxwell equations in an unbounded domain requires the introduction of artificial absorbing boundary conditions (ABCs) designed to minimize the amplitude of the parasitic waves reflected by the artificial frontier of the domain of computation. The construction of such ABCs needs to perform a rigorous mathematical and numerical analysis, in order to obtain a well-posed problem, from a mathematical point of view, and a stable algorithm, from a numerical point of view. In a previous study, Joly and Mercier (1989) [8] have proposed a new second-order ABC for Maxwell's equation in dimension 3, well adapted to a variational approach. In this paper, we present how to apply the second-order ABC proposed in [8] in the framework of a finite element method.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)935-943
عدد الصفحات9
دوريةMathematical and Computer Modelling
مستوى الصوت51
رقم الإصدار7-8
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - أبريل 2010

بصمة

أدرس بدقة موضوعات البحث “Joly-Mercier boundary condition for the finite element solution of 3D Maxwell equations'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا