Item2vec: Neural item embedding for collaborative filtering

Oren Barkan, Noam Koenigstein

نتاج البحث: نشر في مجلةمقالة من مؤنمرمراجعة النظراء

21 اقتباسات (Scopus)

ملخص

Many Collaborative Filtering (CF) algorithms are item-based in the sense that they analyze item-item relations in order to produce item similarities. Recently, several works in the field of Natural Language Processing (NLP) suggested to learn a latent representation of words using neural embedding algorithms. Among them, the Skip-gram with Negative Sampling (SGNS), also known as Word2vec, was shown to provide state-of-the-art results on various linguistics tasks. In this paper, we show that item-based CF can be cast in the same framework of neural word embedding. Inspired by SGNS, we describe a method we name Item2vec for item-based CF that produces embedding for items in a latent space. The method is capable of inferring item-item relations even when user information is not available. We present experimental results that demonstrate the effectiveness of the Item2vec method and show it is competitive with SVD.

اللغة الأصليةالإنجليزيّة
دوريةCEUR Workshop Proceedings
مستوى الصوت1688
حالة النشرنُشِر - 2016
منشور خارجيًانعم
الحدث10th ACM Conference on Recommender Systems, RecSys 2016 - Boston, الولايات المتّحدة
المدة: ١٥ سبتمبر ٢٠١٦١٩ سبتمبر ٢٠١٦

بصمة

أدرس بدقة موضوعات البحث “Item2vec: Neural item embedding for collaborative filtering'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا