Improving evolutionary optimization with metamodel-based operators

نتاج البحث: نشر في مجلةمقالة من مؤنمرمراجعة النظراء

ملخص

Simulation-driven optimization problems often require large computational resources and as such are often solved with algorithms which rely on surrogates, namely computationally cheaper mathematical approximations of the simulation. A common approach is to use a surrogate in conjunction with an evolutionary algorithm to seek an optimum based on the surrogate's predictions. In this setup the mechanics of the evolutionary operators are unrelated to the surrogate and do not benefit from the information it accumulates during the search. As such this paper proposes new EA operators in which surrogates are intrinsically incorporated. The proposed recombination operator combines local surrogates with an SQP search and the mutation operator uses a global surrogate based on nearest-neighbour distances. Performance analysis based on well-established test functions shows the effectiveness of the proposed implementations.

اللغة الأصليةالإنجليزيّة
رقم المقال120093-1
دوريةAIP Conference Proceedings
مستوى الصوت2872
رقم الإصدار1
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2023
الحدث11th International Conference on Mathematical Modeling in Physical Sciences, IC-MSQUARE 2022 - Virtual, Online, صربيا
المدة: ٥ سبتمبر ٢٠٢٢٨ سبتمبر ٢٠٢٢

بصمة

أدرس بدقة موضوعات البحث “Improving evolutionary optimization with metamodel-based operators'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا