Homotopic curve shortening and the affine curve-shortening flow

Sergey Avvakumov, Gabriel Nivasch

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

We define and study a discrete process that generalizes the convex-layer decomposition of a planar point set. Our process, which we call homotopic curve shortening (HCS), starts with a closed curve (which might self-intersect) in the presence of a set P ⊂ R2 of point obstacles, and evolves in discrete steps, where each step consists of (1) taking shortcuts around the obstacles, and (2) reducing the curve to its shortest homotopic equivalent. We find experimentally that, if the initial curve is held fixed and P is chosen to be either a very fine regular grid or a uniformly random point set, then HCS behaves at the limit like the affine curve-shortening flow (ACSF). This connection between HCS and ACSF generalizes the link between “grid peeling” and the ACSF observed by Eppstein et al. (2017), which applied only to convex curves, and which was studied only for regular grids. We prove that HCS satisfies some properties analogous to those of ACSF: HCS is invariant under affine transformations, preserves convexity, and does not increase the total absolute curvature. Furthermore, the number of self-intersections of a curve, or intersections between two curves (appropriately defined), does not increase. Finally, if the initial curve is simple, then the number of inflection points (appropriately defined) does not increase.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيف36th International Symposium on Computational Geometry, SoCG 2020
المحررونSergio Cabello, Danny Z. Chen
ناشرSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
رقم المعيار الدولي للكتب (الإلكتروني)9783959771436
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1 يونيو 2020
الحدث36th International Symposium on Computational Geometry, SoCG 2020 - Zurich, سويسرا
المدة: ٢٣ يونيو ٢٠٢٠٢٦ يونيو ٢٠٢٠

سلسلة المنشورات

الاسمLeibniz International Proceedings in Informatics, LIPIcs
مستوى الصوت164
رقم المعيار الدولي للدوريات (المطبوع)1868-8969

!!Conference

!!Conference36th International Symposium on Computational Geometry, SoCG 2020
الدولة/الإقليمسويسرا
المدينةZurich
المدة٢٣/٠٦/٢٠٢٦/٠٦/٢٠

بصمة

أدرس بدقة موضوعات البحث “Homotopic curve shortening and the affine curve-shortening flow'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا