Going a Step Deeper Down the Rabbit Hole: Deep Learning Model to Measure the Size of the Unregistered Economy Activity

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

Accurately estimating the size of unregistered economies is crucial for informed policymaking and economic analysis. However, many studies seem to overfit partial data as these use simple linear regression models. Recent studies adopted a more advanced approach, using non-linear models obtained using machine learning techniques. In this study, we take a step forward on the road of data-driven models for the unregistered economy activity’s (UEA) size prediction using a novel deep-learning approach. The proposed two-phase deep learning model combines an AutoEncoder for feature representation and a Long Short-Term Memory (LSTM) for time-series prediction. We show it outperforms traditional linear regression models and current state-of-the-art machine learning-based models, offering a more accurate and reliable estimation. Moreover, we show that the proposed model is better in generalizing UEA’s dynamics across countries and timeframes, providing policymakers with a more profound group to design socio-economic policies to tackle UEA.

اللغة الأصليةالإنجليزيّة
رقم المقال101820
الصفحات (من إلى)1759-1774
عدد الصفحات16
دوريةComputational Economics
مستوى الصوت65
رقم الإصدار3
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - مارس 2025

بصمة

أدرس بدقة موضوعات البحث “Going a Step Deeper Down the Rabbit Hole: Deep Learning Model to Measure the Size of the Unregistered Economy Activity'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا