Global Maker-Breaker games on sparse graphs

Dan Hefetz, Michael Krivelevich, Miloš Stojaković, Tibor Szabó

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

11 اقتباسات (Scopus)

ملخص

In this paper we consider Maker-Breaker games, played on the edges of sparse graphs. For a given graph property P we seek a graph (board of the game) with the smallest number of edges on which Maker can build a subgraph that satisfies P. In this paper we focus on global properties. We prove the following results: (1) for the positive minimum degree game, there is a winning board with n vertices and about 10n/7 edges, on the other hand, at least 11n/8 edges are required; (2) for the spanning k-connectivity game, there is a winning board with n vertices and (1+ok(1))kn edges; (3) for the Hamiltonicity game, there is a winning board of constant average degree; (4) for a tree T on n vertices of bounded maximum degree δ, there is a graph G on n vertices and at most f(δ).n edges, on which Maker can construct a copy of T. We also discuss biased versions of these games and argue that the picture changes quite drastically there.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)162-177
عدد الصفحات16
دوريةEuropean Journal of Combinatorics
مستوى الصوت32
رقم الإصدار2
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - فبراير 2011
منشور خارجيًانعم

بصمة

أدرس بدقة موضوعات البحث “Global Maker-Breaker games on sparse graphs'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا