ENHANCING NEURAL TRAINING VIA A CORRELATED DYNAMICS MODEL

Jonathan Brokman, Roy Betser, Rotem Turjeman, Tom Berkov, Ido Cohen, Guy Gilboa

نتاج البحث: نتاج بحثي من مؤتمرمحاضرةمراجعة النظراء

2 اقتباسات (Scopus)

ملخص

As neural networks grow in scale, their training becomes both computationally demanding and rich in dynamics. Amidst the flourishing interest in these training dynamics, we present a novel observation: Parameters during training exhibit intrinsic correlations over time. Capitalizing on this, we introduce correlation mode decomposition (CMD). This algorithm clusters the parameter space into groups, termed modes, that display synchronized behavior across epochs. This enables CMD to efficiently represent the training dynamics of complex networks, like ResNets and Transformers, using only a few modes. Moreover, test set generalization is enhanced. We introduce an efficient CMD variant, designed to run concurrently with training. Our experiments indicate that CMD surpasses the state-of-the-art method for compactly modeled dynamics on image classification. Our modeling can improve training efficiency and lower communication overhead, as shown by our preliminary experiments in the context of federated learning.

اللغة الأصليةالإنجليزيّة
حالة النشرنُشِر - 2024
الحدث12th International Conference on Learning Representations, ICLR 2024 - Hybrid, Vienna, النمسا
المدة: ٧ مايو ٢٠٢٤١١ مايو ٢٠٢٤

!!Conference

!!Conference12th International Conference on Learning Representations, ICLR 2024
الدولة/الإقليمالنمسا
المدينةHybrid, Vienna
المدة٧/٠٥/٢٤١١/٠٥/٢٤

بصمة

أدرس بدقة موضوعات البحث “ENHANCING NEURAL TRAINING VIA A CORRELATED DYNAMICS MODEL'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا