Deep Reinforcement Learning for a Dictionary Based Compression Schema (Student Abstract)

Keren Nivasch, Dana Shapira, Amos Azaria

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

An increasingly important process of the internet age and the massive data era is file compression. One popular compression scheme, Lempel-Ziv-Welch (LZW), maintains a dictionary of previously seen strings. The dictionary is updated throughout the parsing process by adding new encountered substrings. Klein, Opalinsky and Shapira (2019) recently studied the option of selectively updating the LZW dictionary. They show that even inserting only a random subset of the strings into the dictionary does not adversely affect the compression ratio. Inspired by their approach, we propose a reinforcement learning based agent, RLZW, that decides when to add a string to the dictionary. The agent is first trained on a large set of data, and then tested on files it has not seen previously (i.e., the test set). We show that on some types of input data, RLZW outperforms the compression ratio of a standard LZW.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيف35th AAAI Conference on Artificial Intelligence, AAAI 2021
ناشرAssociation for the Advancement of Artificial Intelligence
الصفحات15857-15858
عدد الصفحات2
رقم المعيار الدولي للكتب (الإلكتروني)9781713835974
حالة النشرنُشِر - 2021
الحدث35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
المدة: ٢ فبراير ٢٠٢١٩ فبراير ٢٠٢١

سلسلة المنشورات

الاسم35th AAAI Conference on Artificial Intelligence, AAAI 2021
مستوى الصوت18

!!Conference

!!Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
المدينةVirtual, Online
المدة٢/٠٢/٢١٩/٠٢/٢١

بصمة

أدرس بدقة موضوعات البحث “Deep Reinforcement Learning for a Dictionary Based Compression Schema (Student Abstract)'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا