Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions: State of the Art and Future Directions

Zeynettin Akkus, Alfiia Galimzianova, Assaf Hoogi, Daniel L. Rubin, Bradley J. Erickson

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

818 اقتباسات (Scopus)

ملخص

Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)449-459
عدد الصفحات11
دوريةJournal of Digital Imaging
مستوى الصوت30
رقم الإصدار4
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - أغسطس 2017
منشور خارجيًانعم

بصمة

أدرس بدقة موضوعات البحث “Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions: State of the Art and Future Directions'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا