Counting blanks in polygonal arrangements

Arseniy Akopyan, Erel Segal-Halevi

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

2 اقتباسات (Scopus)

ملخص

Inside a two-dimensional region (``cake""), there are m nonoverlapping tiles of a certain kind (``toppings""). We want to expand the toppings while keeping them nonoverlapping, and possibly add some blank pieces of the same ``certain kind,"" such that the entire cake is covered. How many blanks must we add? We study this question in several cases: (1) The cake and toppings are general polygons. (2) The cake and toppings are convex figures. (3) The cake and toppings are axis-parallel rectangles. (4) The cake is an axis-parallel rectilinear polygon and the toppings are axis-parallel rectangles. In all four cases, we provide tight bounds on the number of blanks.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)2242-2257
عدد الصفحات16
دوريةSIAM Journal on Discrete Mathematics
مستوى الصوت32
رقم الإصدار3
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2018

بصمة

أدرس بدقة موضوعات البحث “Counting blanks in polygonal arrangements'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا