Compressed matching for feature vectors

Shmuel T. Klein, Dana Shapira

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

11 اقتباسات (Scopus)

ملخص

The problem of compressing a large collection of feature vectors is investigated, so that object identification can be processed on the compressed form of the features. The idea is to perform matching of a query image against an image database, using directly the compressed form of the descriptor vectors, without decompression. Specifically, we concentrate on the Scale Invariant Feature Transform (SIFT), a known object detection method, as well as on Dense SIFT and PHOW features, that contain, for each image, about 300 times as many vectors as the original SIFT. Given two feature vectors, we suggest achieving our goal by compressing them using a lossless encoding by means of a Fibonacci code, for which the pairwise matching can be done directly on the compressed files. In our experiments, this approach improves the processing time and incurs only a small loss in compression efficiency relative to standard compressors requiring a decoding phase.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)52-62
عدد الصفحات11
دوريةTheoretical Computer Science
مستوى الصوت638
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 25 يوليو 2016

بصمة

أدرس بدقة موضوعات البحث “Compressed matching for feature vectors'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا