ملخص
For a tree T on n vertices, we study the Maker-Breaker game, played on the edge set of the complete graph on n vertices, which Maker wins as soon as the graph she builds contains a copy of T. We prove that if T has bounded maximum degree and n is sufficiently large, then Maker can win this game within n + 1 moves. Moreover, we prove that Maker can build almost every tree on n vertices in nâ'1 moves and provide nontrivial examples of families of trees which Maker cannot build in n â'1 moves.
اللغة الأصلية | الإنجليزيّة |
---|---|
الصفحات (من إلى) | 1683-1705 |
عدد الصفحات | 23 |
دورية | SIAM Journal on Discrete Mathematics |
مستوى الصوت | 29 |
رقم الإصدار | 3 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2015 |
منشور خارجيًا | نعم |