Blockers for Simple Hamiltonian Paths in Convex Geometric Graphs of Odd Order

Chaya Keller, Micha A. Perles

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

Let G be a complete convex geometric graph, and let F be a family of subgraphs of G. A blocker for F is a set of edges, of smallest possible size, that has an edge in common with every element of F. In Keller and Perles (Discrete Comput Geom 60(1):1–8, 2018) we gave an explicit description of all blockers for the family of simple (i.e., non-crossing) Hamiltonian paths (SHPs) in G in the ‘even’ case | V(G) | = 2 m. It turned out that all the blockers are simple caterpillar trees of a certain class. In this paper we give an explicit description of all blockers for the family of SHPs in the ‘odd’ case | V(G) | = 2 m- 1. In this case, the structure of the blockers is more complex, and in particular, they are not necessarily simple. Correspondingly, the proof is more complicated.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)425-449
عدد الصفحات25
دوريةDiscrete and Computational Geometry
مستوى الصوت65
رقم الإصدار2
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - مارس 2021

بصمة

أدرس بدقة موضوعات البحث “Blockers for Simple Hamiltonian Paths in Convex Geometric Graphs of Odd Order'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا