An underlying geometrical manifold for Hamiltonian mechanics

L. P. Horwitz, A. Yahalom, J. Levitan, M. Lewkowicz

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

6 اقتباسات (Scopus)

ملخص

We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture), that can be put into correspondence with the usual Hamilton–Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamiltonian–Lagrange picture, defined on the Hamilton–Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton–Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton–Lagrange picture can be generated by variations along geodesics in the geometrical picture and establish a correspondence which provides a basis for understanding how the instability in the geometrical picture is manifested in the instability of the the original Hamiltonian motion.

اللغة الأصليةالإنجليزيّة
رقم المقال124501
دوريةFrontiers of Physics
مستوى الصوت12
رقم الإصدار1
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1 فبراير 2017

بصمة

أدرس بدقة موضوعات البحث “An underlying geometrical manifold for Hamiltonian mechanics'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا