Algorithms for SAT based on search in hamming balls

Evgeny Dantsin, Edward A. Hirsch, Alexander Wolpert

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرفصلمراجعة النظراء

21 اقتباسات (Scopus)

ملخص

We present two simple algorithms for SAT and prove upper bounds on their running time. Given a Boolean formula F in conjunctive normal form, the first algorithm finds a satisfying assignment for F (if any) by repeating the following: Choose an assignment A at random and search for a satisfying assignment inside a Hamming ball around A (the radius of the ball depends on F). We show that this algorithm solves SAT with a small probability of error in at most 2n-0.712√n steps, where n is the number of variables in F. To derandomize this algorithm, we use covering codes instead of random assignments. The deterministic algorithm solves SAT in at most 2 n-2√n/log2n steps. To the best of our knowledge, this is the first non-trivial bound for a deterministic SAT algorithm with no restriction on clause length.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
المحررونVolker Diekert, Michel Habib
الصفحات141-151
عدد الصفحات11
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2004
منشور خارجيًانعم

سلسلة المنشورات

الاسمLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
مستوى الصوت2996
رقم المعيار الدولي للدوريات (المطبوع)0302-9743
رقم المعيار الدولي للدوريات (الإلكتروني)1611-3349

بصمة

أدرس بدقة موضوعات البحث “Algorithms for SAT based on search in hamming balls'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا