About Asymptotic and Oscillation Properties of the Dirichlet Problem for Delay Partial Differential Equations

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

3 اقتباسات (Scopus)

ملخص

In this paper, oscillation and asymptotic properties of solutions of the Dirichlet boundary value problem for hyperbolic and parabolic equations are considered. We demonstrate that introducing an arbitrary constant delay essentially changes the above properties. For instance, the delay equation does not inherit the classical properties of the Dirichlet boundary value problem for the heat equation: the maximum principle is not valid, unbounded solutions appear while all solutions of the classical Dirichlet problem tend to zero at infinity, for “narrow enough zones” all solutions oscillate instead of being positive. We establish that the Dirichlet problem for the wave equation with delay can possess unbounded solutions. We estimate zones of positivity of solutions for hyperbolic equations.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)495-502
عدد الصفحات8
دوريةGeorgian Mathematical Journal
مستوى الصوت10
رقم الإصدار3
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2003

بصمة

أدرس بدقة موضوعات البحث “About Asymptotic and Oscillation Properties of the Dirichlet Problem for Delay Partial Differential Equations'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا