A refined first-order expansion formula in Rn: Application to interpolation and finite element error estimates

Joël Chaskalovic, Franck Assous

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

The aim of this paper is to derive a refined first-order expansion formula in Rn, the goal being to get an optimal reduced remainder, compared to the one obtained by usual Taylor's formula. For a given function, the formula we derived is obtained by introducing a linear combination of the first derivatives, computed at n+1 equally spaced points. We show how this formula can be applied to two important applications: the interpolation error and the finite elements error estimates. In both cases, we illustrate under which conditions a significant improvement of the errors can be obtained, namely how the use of the refined expansion can reduce the upper bound of error estimates.

اللغة الأصليةالإنجليزيّة
رقم المقال116274
دوريةJournal of Computational and Applied Mathematics
مستوى الصوت457
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 15 مارس 2025

بصمة

أدرس بدقة موضوعات البحث “A refined first-order expansion formula in Rn: Application to interpolation and finite element error estimates'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا