A probabilistic approach to case-based inference

Martin Anthony, Joel Ratsaby

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

8 اقتباسات (Scopus)

ملخص

The central problem in case based reasoning (CBR) is to infer a solution for a new problem-instance by using a collection of existing problem-solution cases. The basic heuristic guiding CBR is the hypothesis that similar problems have similar solutions. Recently, some attempts at formalizing CBR in a theoretical framework have been made, including work by Hüllermeier who established a link between CBR and the probably approximately correct (PAC) theoretical model of learning in his 'case-based inference' (CBI) formulation. In this paper we develop further such probabilistic modelling, framing CBI it as a multi-category classification problem. We use a recently-developed notion of geometric margin of classification to obtain generalization error bounds.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)61-75
عدد الصفحات15
دوريةTheoretical Computer Science
مستوى الصوت589
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 19 يوليو 2015

بصمة

أدرس بدقة موضوعات البحث “A probabilistic approach to case-based inference'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا