ملخص
a stable (or independent) set in a graph is a set of pairwise non-adjacent vertices. The stability number α(G) is the size of a maximum stable set in the graph G. The independence polynomial of G is defined by I(G; x) = s 0 + s1x + s2x2 + ... + s αxα, α = α(G), where sk equals the number of stable sets of cardinality k in G (I. Gutman and F. Harary 1983). In this paper, we build a family of graphs whose independence polynomials are palindromic and unimodal. We conjecture that all these polynomials are also log-concave.
اللغة الأصلية | الإنجليزيّة |
---|---|
الصفحات (من إلى) | 108-116 |
عدد الصفحات | 9 |
دورية | Carpathian Journal of Mathematics |
مستوى الصوت | 23 |
رقم الإصدار | 1-2 |
حالة النشر | نُشِر - 2007 |