A family of graphs whose independence polynomials are both palindromic and unimodal

Vadim E. Levit, Eugen Mandrescu

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

17 اقتباسات (Scopus)

ملخص

a stable (or independent) set in a graph is a set of pairwise non-adjacent vertices. The stability number α(G) is the size of a maximum stable set in the graph G. The independence polynomial of G is defined by I(G; x) = s 0 + s1x + s2x2 + ... + s αxα, α = α(G), where sk equals the number of stable sets of cardinality k in G (I. Gutman and F. Harary 1983). In this paper, we build a family of graphs whose independence polynomials are palindromic and unimodal. We conjecture that all these polynomials are also log-concave.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)108-116
عدد الصفحات9
دوريةCarpathian Journal of Mathematics
مستوى الصوت23
رقم الإصدار1-2
حالة النشرنُشِر - 2007

بصمة

أدرس بدقة موضوعات البحث “A family of graphs whose independence polynomials are both palindromic and unimodal'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا